Hva er geometriske konstruksjoner?

October 28  by Eliza

Geometriske konstruksjoner, også kalt euklidske konstruksjoner etter den gamle greske matematikeren Euklid, er geometrisk korrekte tall som trekkes ved hjelp av bare et kompass og en linjal. For å lage en geometrisk konstruksjon, er målinger av vinkler og linjer ikke tatt, og herskere brukes ikke unntatt som rettholter. Denne metoden kan brukes i utarbeidelse av teknisk design i engineering og som en måte å lære elevene grunnleggende av geometrisk teori.

En utarbeidelse kompass er et instrument som brukes til å tegne buer og sirkler. Den består av to ben som er forbundet med en justerbar midthengslene, med ett ben som ender i en spiss, og den andre holder et blyantbly ved sin ende. Enheten brukes ved å feste den piggete slutt på papir og inskribere en bue eller sirkel ved å rotere blyant slutten rundt denne faste sentrum. Sirkler og buer med forskjellige dimensjoner kan spores ved å justere den sentrale hengsel til en bredere eller smalere vinkel.

Rettholter brukes i geometriske konstruksjoner for å trekke linjer og kan være en hvilken som helst objekt med en helt rett kant. Herskere blir ofte brukt, selv om markeringene må bli ignorert i å lage konstruksjonen. Tegne trekanter, som er flate rette trekanter av plast eller metall som brukes i teknisk tegning, er et annet populært valg for en linjal, selv om vinklene i trekanten ikke bør brukes til å lage konstruksjonen.

Mange forskjellige geometriske figurer kan konstrueres ved hjelp av bare de to verktøyene som er nevnt ovenfor. For eksempel, for å konstruere en likesidet trekant, et linjestykke er først tegnet med rettholt. Anta at denne linje har endepunkter A og B. Kompasset er fast ved punkt A og utvidet slik at blyantbly rører B. En lysbue trekkes gjennom B til et punkt over AB.

Det neste er at kompasset festes ved punkt B og en annen bue er tegnet med samme radius, slik at punktene krysser over linjen AB. Bruke linjal, er en linje trukket fra dette skjæringspunktet til punkt A, og en annen er trukket til punkt B. De tre linjer som er opprettet nå danner en perfekt likesidet trekant.

Geometriske konstruksjoner er nyttig i undervisning hvordan geometriske figurer er i slekt, men de brukes også i ikke-akademiske innstillinger. Arkitekter og ingeniører må kjenne de elementer av geometriske konstruksjoner for å lage presise tekniske tegninger for design av maskiner eller bygninger. Selv automatiserte dataassistert konstruksjon (DAK) systemer har erstattet manuell tegning i de fleste tekniske innstillinger, er geometriske konstruksjoner fortsatt mye undervist som bakgrunnsinformasjon for å forstå prinsippene for design.

  • En type tegneverktøy, kan kompass brukes til å tegne sirkler og buer i ulike størrelser.
  • Tegne kompass kan bidra til å hånd tegne sirkler.
  • De fleste moderne tegninger og design er laget ved hjelp av DAK-systemer, men arkitekter er fortsatt undervist geometriske konstruksjoner i skolen.