Hvordan å gjøre Inverse Operations
March 18 by Eliza
Hver av de fire store operasjoner (addisjon, subtraksjon, multiplikasjon, divisjon) har en invers - en operasjon som løsner det. Addisjon og subtraksjon er inverse operasjoner fordi tillegg Angrer subtraksjon, og vice versa. For eksempel, her er to inverse ligninger:
1 + 2 = 3
3 - 2 = 1
I den første ligningen, starter du med en og legge til to til det, noe som gir deg 3. I den andre ligningen, har du 3 og ta bort to fra det, som bringer deg tilbake til 1. Hovedtanken her er at du ' re gitt et startnummer - i dette tilfellet, en - og når du legger til et tall og deretter trekke fra det samme tallet, ender du opp igjen med startnummeret. Dette viser at subtraksjon Angrer tillegg.
Tilsvarende Angrer tillegg subtraksjon - det vil si, hvis du trekker et nummer og deretter legge til det samme tallet, ender du opp der du startet. Eksempelvis
184-10 = 174
174 + 10 = 184
Denne gangen, i den første ligningen, starter du med 184 og ta bort 10 fra det, som gir deg 174. I den andre ligningen, har du 174 og legge 10 til det, som bringer deg tilbake til 184. I dette tilfellet starter med nummer 184, når du trekker et nummer og deretter legge til det samme tallet, angrer tillegg subtraksjon og du ender opp tilbake på 184.
På samme måte, multiplikasjon og divisjon er invers drift. Eksempelvis
4 5 = 20
20 5 = 4
Denne gangen starter du med nummer 4 og multipliserer det med 5 for å få 20. Og så du dele 20 med 5 for å gå tilbake til der du startet på 4. Så divisjon Angrer multiplikasjon. Tilsvarende
30 10 = 3
3 10 = 30
Her starter du med 30, dividere med 10, og multipliser med 10 for å ende opp tilbake på 30. Dette viser at multiplikasjon Angrer divisjon.
- • Hvordan Design Produkter med Operations Management i Mind
- • For eldre: Hvordan reparere en Windows Operating System Installasjon
- • Hvordan bruke Aritmetiske Vector Operations i R
- • Hvordan løse Inverse Trigonometri Funksjoner med Uncommon Angles
- • Hvordan arbeide med Inverse Trigonometri Funksjoner
- • Hvordan finne den inverse av en Trig Funksjon
- • Hvordan bruke Order of Operations
- • Hvordan Husk Order of Operations
- • Hvordan styrke kundegrensesnitt med Operations Management